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Abstract—We consider some problems with a set-valued mapping, which can be reduced to
minimization of a homogeneous Lipschitz function on the unit sphere. Latter problem can be
solved in some cases with a first order algorithm—the gradient projection method. As one of
the examples, the case when set-valued mapping is the reachable set of a linear autonomous
controlled system is considered. In several settings, the linear convergence is proven. The
methods used in proofs follow those introduced by B.T. Polyak for the case where Lezanski–
Polyak–Lojasiewicz condition holds. Unlike algorithms that use approximation of the reachable
set, the proposed algorithms depend far less on dimension and other parameters of the problem.
Efficient error estimation is possible. Numerical experiments confirm the effectiveness of the
considered approach. This approach can also be applied to various set-theoretical problems
with general set-valued mappings.
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1. INTRODUCTION

Let Rn be a real Euclidean space with the inner product (·, ·) and norm ‖ · ‖ =
√

(·, ·). Define the
ball Br(a) = {x ∈ R

n : ‖x− a‖ 6 r}, (a ∈ R
n, r > 0) and the unit sphere S1 = ∂B1(0). Denote

by intN and ∂N the interior and the boundary of a set N ⊂ R
n, respectively. Recall that the

supporting function for a closed convex setN ⊂ R
n and vector p ∈ R

n is s(p,N ) = supx∈N (p, x) and
the supporting subset is N (p) = {x ∈ N : (p, x) = s(p,N )}. The set N (p) is called the supporting
element if it is a singleton. For a convex compact set N the set N (p) is the subdifferential (in the
sense of convex analysis) of the supporting function s(p,N ) at the point p. Let PNx be the metric
projection of a point x ∈ R

n onto a closed convex set N .

Let N ⊂ R
n\{0} be a convex compact set and f(p) = s(p,N ). Consider the problem

min
‖p‖=1

f(p) = J. (1)

It is obvious that the solution of problem (1) is a unit vector p0 such that p0 = −z0/‖z0‖,
PN 0 = {z0} and J = (p0, z0). Also z0 ∈ N (p0). Thus finding the projection of zero z0 = PN 0
is equivalent to the problem (1). The general projection problem can be solved the same way as
PNx = x+ PN+(−x)0.

There are many ways to solve the problem of projecting a point onto a convex closed set N , that
depend on how the set N is defined. If the set N is a polyhedron, then it can be solved with the
help of quadratic programming: min ‖x‖2 under conditions (pi, x) 6 s(pi,N ), where {pi} is the set
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of unit normals to N . Method of alternating projections under the transversality condition can be
found in [1, Section 8.5]. In [2], the author considers properties of projector operators. They also
consider convergence of an iterative projection/reflection algorithm for finding points that achieve
a local minimum distance between two closed convex sets or one closed convex set and a closed
prox-regular set. Usefulness of conditional gradient-like methods for determining projections onto
convex sets was considered in [3]. In [4], the authors proposed an iterative algorithm for metric
projection of a point onto a level set of a quadric function. Some algorithms for finding the Bregman
projection of a point onto a closed convex set can be found in [5].

The best rate of convergence for the algorithms considered in the papers above is linear. Besides
that, in many cases, the considered algorithms do not allow one to obtain an efficient computational
procedure.

Further we shall assume that we know supporting function s(p,N ) and supporting subset N (p).
“We know” means that we can efficiently compute s(p,N ) and N (p) for any vector p ∈ R

n\{0}.
Suppose that M⊂ R

n is a convex compact set and R(·) : [0, T ]→ 2R
n
, R(0) = {0}, is a set-

valued mapping with convex compact values that is continuous in Hausdorff metric. Consider a
few problems that can be solved in the framework of statement (1).

Problem (P1). For given t > 0, find the distance between sets R(t) and M, i.e. the value of
ρ(R(t),M) = infx∈R(t), y∈M ‖x− y‖. Find minimal t > 0, so that ρ(R(t),M) = 0.

Problem (P2). For given t > 0, check whether the inclusion R(t) ⊂M holds. Find maximal
t > 0, so that R(t) ⊂M.

Problem (P3). For given t > 0, check whether the inclusion R(t) ⊃M holds. Find minimal
t > 0, so that R(t) ⊃M.

Problems (P1)–(P3) can be stated for an arbitrary set-valued continuous mapping with convex
compact images R(t) and a convex compact set M. Consider a particular case of a set-valued
integral of the form

R(t) =
t
∫

0

F(s) ds, (2)

where F is a set-valued mapping with convex compact values. By default we shall assume that
0 ∈ F(s) for all s > 0. The last integral is treated as the Aumann integral [6]

t
∫

0

F(s) ds =







t
∫

0

u(s) ds : u(s) ∈ F(s)—a measurable selector







.

By the Lyapunov theorem on vector measures [7] the value of the integral is convex and compact.
From formula (2) and the inclusion 0 ∈ F(s) for all s ∈ [0, t] we conclude that {R(t)}t>0 is increas-
ing: R(t1) ⊂ R(t2) for all 0 6 t1 6 t2. It is also possible to consider a setM(t) depending on t.

The support function and supporting subset for integral (2) can be calculated easily: for a unit
vector p and any t > 0 we get

s(p,R(t)) = s



p,

t
∫

0

F(s) ds


 =

t
∫

0

s (p,F(s)) ds, R(t)(p) =
t
∫

0

F(s)(p) ds. (3)

Another class of sets for which we know the supporting function and the supporting element are
finite sums of linear images of some fixed sets M with known s(p,M) and M(p), e.g. ellipsoids.
Suppose that R(t) =∑m

k=1Ak(t)B1(0), where Ak(t) are continuous nondegenerate matrices for all
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t > 0. Then

s(p,R(t)) =
m
∑

k=1

s(p,Ak(t)B1(0)) =
m
∑

k=1

‖AT
k (t)p‖, R(t)(p) =

m
∑

k=1

Ak(t)A
T
k (t)p

‖AT
k (t)p‖

. (4)

Note that a finite sum of ellipsoids is, in general, not an ellipsoid.

Our most important example is the reachable set of an autonomous linear controlled system,
which is described by a differential inclusion

x′(t) ∈ Ax(t) + U , x(0) = 0, x ∈ R
n, A ∈ R

n×n, (5)

where U ⊂ R
n is a compact, 0 ∈ U . The reachable set (all points to which the system can arrive at

the given moment of time) can be represented in the form

R(t) =
t
∫

0

eAsU ds. (6)

The most important strengthening of the convexity condition is the concept of strong convexity
with radius R. The set in R

n is strongly convex with radius R if it can be represented as an
intersection of closed balls of radius R [8, 9]. This property can also be defined via the modulus of
convexity [10]. In [8], the authors proved that the set-valued integral (2) is strongly convex if the
multifunction F(s) has strongly convex values. In [11], the local strong convexity in certain sense
was proved for integral (2) with F(s) = A(s)U , where A(s) is a certain class of smooth matrices
and U is a polyhedron. In [12], the second order approximation in time of a Runge-Kutta type
scheme for discretization of strongly convex differential inclusions was considered.

Various problems with set-valued integrals can be solved with the help of approximation of values
of the integrals. In [13], the authors describe different methods to construct an approximation
of the reachable set of a controlled system, see Table 1 therein. One of the most general and
effective methods is based on the supporting function (it is also called hyperplane method), see,
for example, [14]. We can consider an outer polyhedral approximation forM of the form

{x ∈ R
n : (p, x) 6 s(p,M), ∀p ∈ G}, (7)

where G ⊂ R
n is a finite grid of unit vectors and solve the problem for the approximation. The

disadvantage of this approach is that a reasonable approximation can be obtained only in a space
of low dimensions 2 6 n < 5, see [15].

There are also different approaches using special approximations, e.g. with zonotopes [16] or
ellipsoidal technique [17]. The latter technique sometimes permits to describe the reachable set
locally.

In the present paper we think R(t), M, N to be either the value of a set-valued integral or
a finite sum of ellipsoids. We shall show how to reduce different problems, e.g. (P1)–(P3), with
such sets to the problem (1). The function f(p) in (1) turns out to be the supporting function of
some convex compact set N , which depends on R(t) andM. Lezanski-Polyak-Lojasiewicz (LPL)
condition [18, formula (4.6)] is proven in problem (1), from which a linear convergence rate for
gradient projection algorithm is obtained. The supporting function f(p) and its gradient can be
computed, e.g. using formula (3) for a set-valued integral or by (4) for sum of ellipsoids. With the
supporting function and its gradient we obtain an efficient calculation scheme. We also consider
a local condition of strong convexity: for some R > 0 for the solution p0 of (1) the inclusion
N ⊂ BR(N (p0)−Rp0) holds. Under this condition the problem can be solved with the help of the
gradient projection method with a fixed step-size or with Armijo’s step-size. We prove a linear rate
of convergence for all algorithms and consider various examples.
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There is another way to solve (1) using the conditional gradient (CG) method: take the func-
tion g(x) = 1

2‖x‖2, a starting point x1 ∈ N and iterations xk = argmaxx∈N (−g′(xk), x), xk+1 ∈
Argminx∈[xk,xk] g (x). Note that, to ensure the linear convergence of this algorithm, strong convex-
ity of N is usually required [18, Therorem 6.1, 5].

1.1. Notation and Auxiliary Results

Recall that for sets M and N from R
n we have M+N = {x+ y : x ∈ M, y ∈ N} and

M ∗ N = {x : x+N ⊂M} = ⋂

x∈N (M− x). These operations are called the Minkowski sum
and difference of setsM and N .

Denote by ̺(x,M) = infy∈M ‖x− y‖ the distance from a point x to a setM.

The Hausdorff distance on the space of convex compacts in R
n can be defined like this: for any

convex compact setsM,N ⊂ R
n

h(M,N ) = max
‖p‖=1

|s(p,M) − s(p,N )|.

Define [a]−: [a]− = |a| for a 6 0 and [a]− = 0 for a > 0. Then [min‖p‖=1(s(p,M) − s(p,N ))]− is
the halfdistance from N toM and it is equal to maxx∈N ̺(x,M).

Suppose that the set R(t) (6) depends on parameter t. Then we shall denote the supporting
set for a vector p by R(t)(p). From the Aumann’s or Riemann’s definition of the integral for any
matrix J ∈ R

m×n we have JR(t) = ∫ t
0 Je

AsU ds. In particular, for any vector p ∈ R
n

R(t)(p) =
t
∫

0

(eAsU)(p) ds.

A set M⊂ R
n is strongly convex with radius R > 0 if we can represent M as intersection of

some collection of closed Euclidean balls with radius R. For any strongly convex set M with
radius R > 0 there exists another strongly convex set N with radius R such thatM+N = BR(0)
[8, 19]. Strong convexity of a compact convex setM with radius R is equivalent to the Lipschitz
condition for the supporting element M(p) on the unit sphere: for all ‖p‖ = ‖q‖ = 1 we have
‖M(p) −M(q)‖ 6 R‖p− q‖ [8].

We shall say that a convex set M⊂ R
n is uniformly smooth with constant r > 0 if we have

M =M0 + Br(0), whereM0 ⊂ R
n is a convex compact set. For more details see [20, Definition 2.1].

Let S0 ⊂ R
n be a smooth manifold without boundary, x ∈ S0, ε > 0. For a differentiable

function f : S0 + intBε(0)→ R define S = S(f, x) = {x ∈ S0 : f(x) 6 f(x)}. Assume S to be a
smooth manifold with the boundary ∂S ⊂ {x ∈ S0 : f(x) = f(x)}. We shall say that the Lezanski–
Polyak–Lojasiewicz (LPL) condition holds on S [18; 21, Section 3.2] with a constant µ > 0 if
Ω = Argminx∈S f(x) 6= ∅ and for all x ∈ S the following inequality holds

‖PTxf
′(x)‖2 > µ(f(x)− f(Ω)). (⋆)

Here Tx is the tangent subspace to the manifold S at the point x ∈ S, PTx is the orthogonal projector
onto Tx, f ′(x) is the Frechet gradient of the function f at the point x ∈ S.

Lemma 1. For any nonzero vectors p, q ∈ R
n we have

∥

∥

∥

p
‖p‖ −

q
‖q‖

∥

∥

∥ 6
‖p−q‖√
‖p‖ ‖q‖

,

Proposition 1 [8]. Suppose that a set-valued mapping F : [0, t]→ 2R
n
is continuous in the Haus-

dorff metric and has strongly convex images F(s) with radius R(s) for all s ∈ [0, t], that is integrable
at [0, t]. Then the integral P =

∫ t
0 F (s) ds is strongly convex with radius R =

∫ t
0 R(s) ds.

It should be mentioned that the set-valued integral can be strongly convex even when F(s) is
not. itself. For example, this situation typically takes place for the reachable set R(t) of system (5)
in dimension n = 2 [22]. Nevertheless, the reachable set in dimensions n > 3 is often not strongly
convex.
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Let us look at an elementary example of a system mentioned in (5) (a similar system is considered
in Example 1 below). Let the control set be a segment: U = co {±v}. Define an analytic function
gp(s) = (p, eAsv). The supporting set R(t)(p) is a singleton, provided that gp(s) 6≡ 0. This is
guaranteed by full rank conditions

span{Aiv}n−1
i=0 = R

n ⇔ spanR(t) = R
n.

Since gp is analytic, the equation gp = 0 has a finite number of roots in [0, t]. The supporting
element can be written down as

R(t)(p) =
t
∫

0

eAsv × sign gp(s) ds =
k
∑

i=0

ǫi

si+1(p)
∫

si(p)

eAsv ds, (8)

where si(p), i = 1, k are the roots of gp(s), s0 = 0, sk+1 = t, ǫi = ±1 is equal to sign of gp(s) when
s ∈ [si, si+1]. Therefore, the behaviour of supporting element is defined by dependence of roots
of analytic function gp(s) on parameter p. If all roots are simple and lie on interval (0, t), then
it follows from implicit function theorem that the support element depends smoothly on p in the
neighbourhood. Therefore, the supporting element is locally Lipschitz. On the other hand, gp can
have roots with multiplicity greater than one belonging to [0, t]. In this case the supporting element
is typically not locally Lipschitz, which means that the strong convexity fails. This is illustrated in
the example below. However, it is easy to show the set of vectors p, such that gp has non-simple
zeros on [0, t], has measure zero on the unit sphere. Some generalizations of this approach to
set-valued integrals can be seen in [11].

Note that if all eigenvalues of A are real, then the number of switchings in optimal control
u(t) = U(eAT (T−t)p) = v × sgngp(T − t) is no greater than n− 1, it is a special case of Feldbaum
theorem, see [23, Theorem 2.11]. In the examples below, we consider a dynamical system defined
by ẋ = Ax+Bu, u ∈ U , t ∈ [0, T ]. The optimal control that guides the system to the support
element R(t)(p) is [24]:

u(t) = U(B⊤eA
⊤(T−t)), t ∈ [0, T ]. (9)

Consider the system

ẋ = Ax+Bu, x(0) = 0, u ∈ R : |u| 6 1, A =







−1 1 0
0 −1 1
0 0 −1






, B =







0
0
1






. (10)

Following what was said above, let gp(s) = (p, eAsB) = 1
2e

−s
(

p1s
2 + 2p2s+ 2p3

)

.

Let p0 =
1
3(2,−2, 1), note that gp0(s) = 1

3e
−s(s− 1)2 has a multiple root s = 1. We are interested

in behaviour of supporting element near p0. Remember that f(s) ≍ g(s), s→ 0, if f(s) = O(g(s))

and g(s) = O(f(s)), s→ 0. Define for ε ∈ (0, 1) a unit vector q = q(ε) = (2,−2,1−ε)√
9−2ε+ε2

. It is easy to

see that ‖p − q(ε)‖ ≍ ε, ε→ 0, and to find the roots gq(ε) =: s1,2(ε) = 1±√ε. Then for t > 1 +
√
ε

we can write down the supporting element in the following way:

R(t)(p)−R(t)(q) =
1+

√
ε

∫

1−√
ε

e−s(s2, 2s, 2)⊤ ds,

‖R(t)(p)−R(t)(q)‖ >
1+

√
ε

∫

1−√
ε

2e−s ds ≍ √ε, ε→ 0.

Therefore, the supporting element fails to be Lipschitz in a neighbourhood of p0, so the reachable
set R(t) is not strongly convex.
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Fig. 1. Attainable set of (10) and normal vectors, where the supporting element is not locally Lipschitz, t = 2.

The reachable set for t = 2 can be seen at Fig. 1. Normal vectors, for which the supporting
element is not locally Lipschitz, can be seen in the upper part of the figure. They lie on the
boundary of the normal cone at the tip of the set. Moreover, it is evident that the reachable set
is structured like a CW complex. This structure appears as a result of (8), since the supporting
element can be determined by positions and multiplicities of the roots of gp(s) on [0, t] and the sign
of gp around the left end of the segment. If the system has a matrix with real eigenvalues, then the
overall multiplicity of roots of gp is not greater that n− 1. It can be shown, that in this case an
arbitrary configuration of roots substituted into (8) produces a point from ∂Rs(t). Evaluating (8)
on sets of roots with different overall multiplicities allows us to extract curvilinear edges and faces
from the reachable set. Some generalization of the above arguments can be seen in [11].

Lemma 2. Suppose that A1 = J−1AJ is the Jordan form of the matrix A from system (5),
U1 = J−1U, where J ∈ R

n×n is the transfer matrix. If the set R1(t) =
∫ t
0 e

A1sU1 ds is strongly
convex with radius r, then R(t) = ∫ t

0 e
AsU ds is also strongly convex with radius R = rα2/β, where

α = ‖J‖ = max‖h‖=1 ‖Jh‖, β = min‖h‖=1 ‖Jh‖.
Note that by [25, Theorem 3] any ellipsoid

N =

{

x ∈ R
n :

n
∑

k=1

x2k
λ2
k

6 1

}

, λ1 > λ2 > . . . > λn > 0,

is strongly convex with radius R =
λ2
1

λn
.

Lemma 3. Suppose that in system (5) U is uniformly smooth with constant r > 0. Then R(t) (6)
is uniformly smooth with constant r0 = r

t
∫

0

λ2
n(s)

λ1(s)
ds, where λ1(s) > . . . > λn(s) > 0 are the semiaxes

of the ellipsoid eAsB1(0).
Note that by the proof of Lemma 3 any ellipsoid

N =

{

x ∈ R
n :

n
∑

k=1

x2k
λ2
k

6 1

}

, λ1 > λ2 > . . . > λn > 0,

is uniformly smooth with constant r = λ2
n

λ1
.
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In particular, Lemmas 2 and 3 show that it is enough to consider system (5) with the Jordan
form of the matrix A.

The next proposition estimates the rate of decrease for a Lipschitz differentiable function per
step of the gradient projection method.

Proposition 2 [26, Lemma 2]. Consider the problem minM f(x) in R
n. Suppose that M is a

closed set, f ′ is a Lipschitz function with constant L1. Fix 0 < λ 6
1
L1

. Assume that x0 ∈ M and
y0 ∈ PM(x0 − λf ′(x0)). Then

f(x0)− f(y0) >
1

2

(

1

λ
− L1

)

‖x0 − y0‖2.

For the validity of the previous formula the Lipschitz condition for f ′ with constant L1 is essential
on the segment [x0, y0], see the proof of [27, Proposition 2.2].

1.2. Additional Assumptions on R(s)
When solving problems (P1)–P(3) we will require some additional assumptions on sets we work

with. Here we will enumerate all of them, we will only need some of them for each problem.

(1) R(s) is strongly convex with radius RT > 0 for all s ∈ [0, T ].
(2) M is uniformly smooth with constant r > 0: M =M0 + Br(0), also

(a) M0 us strongly convex with constant R0 > 0.
(b) r > RT .

(3) M is strongly convex with constant R0 > 0.
(4) U is uniformly smooth with constant rU > 0: U = U0 + BrU (0).
(5) r(t) > R0, where r(t) = rU

∫ t
0

λ2
n(s)

λ1(s)
and λ1(s) > . . . > λn(s) are the semiaxes of the ellipsoid

eAsB1(0).
The first assumption is fulfilled if, for example, the set eAsU is strongly convex with radius

R(s) > 0. Then from proposition 1 and linearity of the integral it follows that

R(T ) =
T
∫

0

eAsU ds =

t
∫

0

eAsU ds+

T
∫

t

eAsU ds = R(t) +
T
∫

t

eAsU ds,

then we obtain that the set

R(t) =
⋂







R(T )− x : x ∈
T
∫

t

eAsU ds







is strongly convex with radius RT =
∫ T
0 R(s) ds for all t ∈ [0, T ].

1.3. Structure of the Paper

In Sections 2–4 we formulate sufficient conditions and prove results about linear convergence of
the gradient projection method for a particular optimization problem with supporting functions to
which problems (P1)–(P3) are reduced. This solves problems for a fixed t ∈ [0, T ].

In Section 5 we discuss how we can find the starting point p1 for the iteration process. Estimates
of the probability of finding p1 using random search are given.

In Section 6 we discuss the results of numerical experiments. Here we also consider an algorithm
for finding the optimal t in problems (P1)–(P3).

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 5 2024
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2. PROBLEM (P1)

Assumptions: 1, 2(a).

For all t ∈ [0, T ] consider the set N (t) = R(t) + (−M0). The set N (t) is strongly convex with
radius R = RT +R0 as a sum of strongly convex sets [19]. The equality R(t) ∩M = ∅ can be
reformulated as follows: the distance from zero to N (t) is more than r > 0. If the last assertion
is true, then 0 /∈ R(t) + (−M) and otherwise 0 ∈ R(t) + (−M). Using the supporting function we
can check the inclusion as follows: for the function f(p) = s(p,N (t)) = s(p,R(t)) + s(p,−M0) find

min
‖p‖=1

f(p) = J. (11)

If J < −r, then the distance from zero to the set N (t) is greater than r. If J > −r, then the
distance from zero to the set N (t) is no greater than r and hence 0 ∈ R(t) + (−M). Note that

f ′(p) = R(t)(p) + (−M0)(p) =

t
∫

0

(eAsU)(p) ds + (−M0)(p). (12)

Theorem 1. Fix ε ∈ (0, 1). Suppose that in (11) J < 0. Then under above mentioned assump-
tions the function f in (11) satisfies the LPL condition on the manifold S = {p ∈ S1 : f(p) 6 0}
with constant µ = |J |. Also the function f has Lipschitz continuous gradient on the set {p ∈ R

n :
1− ε 6 ‖p‖ 6 1 + ε} with Lipschitz constant L1 =

R
1−ε = RT+R0

1−ε .

Consider the following iteration process

p1 ∈ S (i.e. f(p1) 6 0), pk+1 = PS1
(pk − λf ′(pk)), λ ∈

(

0,
1

L1

]

. (13)

If pk ∈ S, then pk+1 ∈ S. Indeed, by Proposition 2

f(pk)− f(pk+1) >
1

2

(

1

λ
− L1

)

‖pk − pk+1‖2 > 0, f(pk+1) 6 f(pk) 6 0.

Consider the point pk − λf ′(pk). We have

‖pk − λf ′(pk)‖ > (pk, pk − λf ′(pk)) = 1− λ(pk, f
′(pk)) = 1− λf(pk) > 1.

Theorem 2. Suppose that the function f is Lipschitz continuous with constant L = ‖N (t)‖, the
function f ′ is Lipschitz continuous on S1 with constant R = RT +R0. Suppose that J < 0. Put
L1 = 2R.

Fix λ ∈ (0,min{ 1
L1

, 1
2L}). Then algorithm (13) converges to a point of minimum p0 ∈ S1 at a

linear rate:

f(pk+1)− f(p0) 6 q(f(pk)− f(p0)),

‖pk+1 − pk‖ 6 qk/2
√

2λ(f(p1)− f(p0)),

q = 1− λ|J |
2Lλ+ 2

∈ (0, 1).

The next example shows that the sharpness condition of the type ∃α > 0 that f(p)− f(p0) >
α‖p − p0‖ for all p ∈ S does not hold.

Consider L > r > 0, ‖p0‖ = 1 and the set N = Br(−Lp0). Then for all p ∈ S1 we have

s(p,N )− s(p0,N ) = L(1− (p, p0)) =
L

2
‖p− p0‖2.
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Remark 1. The above results can be proven under more local assumptions. Instead of the strong
convexity assumption 1 of R(T ) with radius RT we can require the fulfillment for all p ∈ S the
supporting principle for the set R(t): there exists RT > 0 with

R(t) ⊂ BRT
(R(t)(p) −RT p), ∀p ∈ S. (14)

Assumption 2(a) concerningM must be met.

In this situation the set Z(t) = R(t) + (−M0) satisfies the supporting principle for all p ∈ S
with radius R = RT +R0:

Z(t) ⊂ BR(N (t)(p)−Rp), ∀p ∈ S.
For any p, q ∈ S we get ‖N (t)(p)−Rp−N (t)(q)‖2 6 R2, ‖N (t)(q)−Rq−N (t)(p)‖2 6 R2 and

‖N (t)(p) −N (t)(q)‖2 6 2R(p,N (t)(p) −N (t)(q)),

‖N (t)(q) −N (t)(p)‖2 6 2R(q,N (t)(q) −N (t)(p)) = 2R(−q,N (t)(p) −N (t)(q)),

hence ‖N (t)(p)−N (t)(q)‖ 6 R‖p− q‖. Keeping in mind that for any p, q ∈ S the small arc of the
circle of radius 1 with center 0 and endpoints p, q belongs to S, we can repeat proofs of Theorems 1
and 2 for the considered case. In the generalization of Theorem 1 we should take p, q ∈ Rn with p

‖p‖ ,
q

‖q‖ ∈ S, i.e. Lipschitz condition will be proved on the set
{

p ∈ R
n : 1− ε 6 ‖p‖ 6 1 + ε, p

‖p‖ ∈ S
}

.

3. PROBLEM (P2)

Assumptions: 1, 2(b), 3.

Fix ε ∈ (0, r − RT ). Consider ε-neighbourhood Rε(t) = R(t) + Bε(0) of the set R(t). Inclusion
R(t) ⊂M means that

max
x∈Rε(t)

̺(x,M) 6 ε

and otherwise, if maxx∈Rε(t) ̺(x,M) > ε, then R(t) 6⊂ M. Using supporting functions we can
formulate an equivalent problem: for the function f(p) = s(p,M)− s(p,Rε(t)) find minimum

min
‖p‖=1

f(p) = J. (15)

If J > −ε then R(t) ⊂M and if J < −ε then R(t) 6⊂ M.

Let S = {p ∈ S1 : f(p) 6 0}. Suppose that p0 ∈ S1 is a solution of (15).

Assume that S 6= ∅. Consider an iteration process

p1 ∈ S, pk+1 = PS1
(pk − λf ′(pk)). (16)

Theorem 3. Suppose that under assumptions of Section 3 we have J < 0 in problem (15).
Let r0 = r −RT − ε > 0, L = ‖M ∗ Rε(t)‖ > 0. Then for any p1 ∈ S and 0 < λ 6

min{r20/R3
0, 1/(2L), 1/(2R0)} iterations (16) converge at a linear rate to the solution p0:

‖pk+1 − p0‖ 6 q‖pk − p0‖, q =

√

1− 2r20
R0

λ+R2
0λ

2 ∈ (0, 1).

Remark 2. As in Section 2, we can prove the above results under more local assumptions. Instead
of the Assumption 1 on strong convexity of R(s) for all s ∈ [0, T ] with radius RT we can require
the fulfillment for all p ∈ S of the supporting principle for the set R(t): there exists RT > 0 such
that for a number ε ∈ (0, r −RT ) we have

M(p)−R(t)(p) +R(t) ⊂ BRT
(M(p)−RT p) ⊂ Br−ε(M(p)− (r − ε)p) ⊂M, ∀p ∈ S. (17)

Assumptions 2(b), 3 concerningM must be met.
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In the considered situation we have

M(p)−R(t)(p)− εp+Rε(t) ⊂M, ∀p ∈ S (18)

and hence f ′(p) =M(p)−R(t)(p)− ε× p =M(p)−Rε(t)(p) =
(M ∗ Rε(t)

)

(p) for all p ∈ S be-
cause f ′(p) ∈ M ∗ Rε(t) and (p, f ′(p)) = s(p,M ∗ Rε(t)) for all p ∈ S. Indeed, fix p ∈ S. From the
inclusion f ′(p)+Rε(t) ⊂M we get f ′(p) ∈ M ∗ Rε(t). On the other hand (p, f ′(p))+s(p,Rε(t)) =
s(p,M) and thus (p, f ′(p)) = s(p,M)− s(p,Rε(t)) > co (s(p,M)− s(p,Rε(t)) = s(p,M ∗ Rε(t)).

The next steps repeat the proof of Theorem 3.

4. PROBLEM (P3)

Assumptions: 1, 3, 4, 5.

Note that by Lemma 3 the set R(t) is uniformly smooth with constant r(t) and hence RT > r(t).

Fix ε ∈ (0, r(t)−R0). Consider ε-neighbourhood Mε =M+ Bε(0) of the set M. Inclusion
R(t) ⊃M means that

max
x∈Mε

̺(x,R(t)) 6 ε

and otherwise, if maxx∈Mε ̺(x,R(t)) > ε, then R(t) 6⊃ M. On the base of supporting functions
we can formulate the next equivalent problem: for the function f(p) = s(p,R(t))− s(p,Mε) =
s(p,R(t)) − s(p,M)− ε‖p‖ find minimum

min
‖p‖=1

f(p) = J. (19)

If J > −ε then R(t) ⊃M and if J < −ε then R(t) 6⊃ M.

As usual, S = {p ∈ S1 : f(p) 6 0}. Suppose that p0 ∈ S1 is a solution of (19).

Assume that S 6= ∅. Consider an iteration process

p1 ∈ S, pk+1 = PS1
(pk − λf ′(pk)). (20)

Theorem 4. Suppose that under assumptions of Section 4 we have J < 0 in problem (19). Let r =
r(t)−R− ε > 0, L= ‖R(t) ∗ Mε‖. Then for any p1 ∈S and 0<λ6min{r2/R3

T , 1/(2L), 1/(2RT )}
iterations (20) converges at a linear rate to the solution p0:

‖pk+1 − p0‖ 6 q‖pk − p0‖, q =

√

1− 2r2

RT
λ+R2

Tλ
2 ∈ (0, 1).

Remark 3. As in Section 3, we can also prove the above results under more local assumptions.
Instead of the strong convexity Assumption 3 ofM with radius R0 we can require the fulfillment
for all p ∈ S of the supporting condition for the setM: there exists R0 > 0 such that

M⊂ BR0
(M(p)−R0p), ∀p ∈ S. (21)

Assumptions 1, 4 and 5 must be met.

5. CHOOSING THE INITIAL POINT

We choose p1 using random search: in problems (P1)–(P3) we sample a random vector p1 ∈ S1
from a uniform distribution and check the inequality f(p1) 6 0. If it fails, we choose another
random vector p1 ∈S1 and so on. In the present section we estimate the probability P({f(p1) 6 0})
to find an appropriate vector p1. As an example, let us consider (P1) for fixed t > 0. Recall, that
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J < 0 is the solution of problem (11). By assumptions for (P1), the set N (t) is strongly convex
with radius R > 0. Denote z0 = PN (t)0, p0 = −z0/‖z0‖. For a set M⊂ R

n define coneM to be
the (convex) conic hull of the setM, i.e. coneM = {∑n

i=1 λixi : xi ∈ M, λi > 0}. For a pair of
points x, y ∈ R

n, x 6= y, define the ray [x, y) = {x+ t(y − x) : t > 0}.
Let D> 0 and H = {x∈Rn : (p0, x− z0) = 0}. Suppose that K= cone (H ∩BD(z0))⊃ coneN (t).

For example, D can be the diameter of the set N (t), i.e. D = supx,y∈N (t) ‖x− y‖.
The set K is a cone of revolution with axis [0, z0). The angle between the axis and a generatrix

is equal to α, tanα = D
|J | . The polar set K− = {p ∈ R

n : (p, q) 6 0 ∀q ∈ K} is also a cone of

revolution with axis [0,−z0) and the angle between the axis and a generatrix is equal to β = 1
2π−α,

thus cos β = D√
D2+J2

.

By the definition of K we have for any p1 ∈ S1 ∩ K− that f(p1) 6 0. Denote Scap = S1 ∩ K−

and S0 = K− ∩H0, here H0 = {x ∈ Rn : (p0, x) = cosβ}. Note that S0 = H0 ∩Br0(cos β × p0)

with r0 = sin β = |J |√
D2+J2

. (n− 1)-Lebesgue’s measure µn−1S0 6 µn−1Scap and thus

P({f(p1) 6 0}) > µn−1Scap
µn−1S1

>
µn−1S0
µn−1S1

=
rn−1
0

n

Vn−1

Vn
=

1

n

Vn−1

Vn

( |J |√
D2 + J2

)n−1

,

Vn = πn/2

Γ(n
2
+1)

is the volume of a unit ball in R
n.

Suppose now that Br(z0 − rp0) ⊂ N (t) for some r > 0. Then consider a cone of revolution
K = coneBr(z0 − rp0) ⊂ coneN (t) with axis [0, z0). The angle between the axis and a generatrix of
K is equal to α, sinα = r

r+|J | . Define a polar cone K− ⊃ (coneN (t))− with the angle β between the

axis [0,−z0) and a generatrix, cos β = r
r+|J | . We have for any p1 ∈ S1 with f(p1) 6 0 that p1 ∈ Scap,

as previously Scap = S1 ∩ K−. Define S10 = K− ∩H1 with H1 = {x ∈ R
n : (p0, x) = 1}. From the

elementary planimetry it is easy to see that S10 = H1 ∩Br1(p0), r1 = tan β =

√
2r|J |+|J |2

r . Then
µn−1S10 > µn−1Scap and

P({f(p1) 6 0}) 6 µn−1Scap
µn−1S1

6
µn−1S10
µn−1S1

=
rn−1
1

n

Vn−1

Vn
=

1

n

Vn−1

Vn

(
√

2r|J |+ |J |2
r

)n−1

.

Finally for a set N (t) of diameter D that is also uniformly smooth with constant r we have

1

n

Vn−1

Vn

( |J |√
D2 + J2

)n−1

6 P({f(p1) 6 0}) 6 1

n

Vn−1

Vn

(
√

2r|J |+ |J |2
r

)n−1

. (22)

Similarly with the right estimate in (22) for an R-strongly convex set N (t) one can prove that

1

n

Vn−1

Vn

(
√

2R|J |+ |J |2
R+ |J |

)n−1

6 P({f(p1) 6 0}).

This estimate shows that P({f(p1) 6 0}) ≍ |J |n−1 when J → 0. In our consideration |J | is of the
order ε > 0 and in this case the left inequality in (22) gives a more reasonable estimate because in
most examples the value of D is much less than R.

The estimated probability can be very small and strongly influences calculations when either |J |
is close to zero or n is large. In our experiments in the examples below for n in range 3 6 n 6 12
we found p1 in a few dozens attempts at most (for problems (P1), (P2)). Sometimes we needed
about 1000 attempts to find the vector p1 in problem (P3). One of the reasons is that D > 0 in
the above estimate can be chosen to be significantly smaller than the diameter N (t), since we only
need the fulfillment of the inclusion cone (H ∩BD(z0)) ⊃ coneN (t).
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Sometimes we can choose p1 deterministically, see the Algorithm from Section 9.

The step size λ for solving problems (P1)–(P3) can be chosen using the Armijo rule. Its detailed
description can be found in [29].

6. MODELING AND EXAMPLES

Some of the considered examples are low-dimensional (n = 3) for ease of interpretation by a
reader. As shown in the following, convergence rates for such examples and for examples of higher
dimension are the same.

6.1. Problem (P1). Example 1

In this example we calculate the point of time at which the reachable set R first intersects the
target setM.

Consider the system

ẋ = Ax+Bu, x(0) = 0, u ∈ R : |u| 6 1, A =







−1.3 1 0
0 −1.3 1
0 0 −1.3






, B =







0
0
1






. (23)

The target set isM =M0 + Br(0), whereM0 is the ball B0.2(0.7,−0.3, 0.35), r = 0.5. Recall
that f(p) in problem (11) depends on t, i.e. f(p, t) = s(p,R(t)) + s(p,−M0).

We first consider the auxiliary problem of finding the distance between sets R(t) and M for
t = 1, with initial condition p1 = (0,03123620, −0,72453809, 0,68852659), f(p1, 1) = −0,05270947.

Figure 2,a: Convergence of the gradient projection algorithm for the auxiliary problem
min‖p‖=1 f(p, t) for t = 1. Approximation of the convergence rate is f(pk, 1) − f(p0, 1) ≈ 0.2486×
0.83043k . The found solution is p0 = (0.87540058, −0.46926876, 0.11602002) with f(p0, 1) =
− 0.573989.

The reachable set and the point closest to the target set are depicted on Fig. 3.

When searching for the minimal time at which intersection occurs, we only know the search
interval [0, T ], but not the starting point p1 for arbitrary moment of time from the interval. There
are two different strategies. The first one is to randomly find p1 ∈ S1 with f(p1, t) < 0 for a given t
and increase t by a small amount. However, due to the time-related nature of (P1) there is a better
algorithm. This algorithm involves keeping track of suitable p, f(p, t) < 0, while increasing the
time.

Fig. 2. Convergence of gradient projection algorithm with step size λ = 0.1. (a) Problem (P1), Example 1,
(b) problem (P1), Example 2.
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Fig. 3. The point of the reachable set R(t) (t = 1) closest to the target set found by gradient projection
algorithm (problem (P1), Example 1).

Algorithm for problem (P1) (finding minimal time)
Data: T > 0, f(p, t), r > 0, tolerance εtol > 0, bounds tlower = 0, tupper = T , time step ∆t > 0.

(1) Put t← 0 and find initial p1 satisfying f(p1, 0) < 0 first. Then run the gradient projection
method which gives p(0) = argmin‖p‖=1 f(p, 0) : f(p(0), 0) < 0.

(2) Put ttest = min{t+∆t, tupper}.
If f(p(t), ttest) > 0, then set ∆t ← ∆t/2 and repeat this step.
If f(p(t), ttest) < 0, then proceed to Step (3).

(3) Run the gradient projection method (13) for function f(p, ttest) with initial point p1 = p(t).
It results in p0 and J = f(p0, ttest) = min‖p‖=1 f(p, ttest) < 0.

(4) If J > −r + εtol, then the reachable set intersects the set M. Update tupper ← ttest, ∆t ←
1
2 min{∆t, tupper − tlower} and proceed to Step (2) with the same t and p(t). Otherwise con-
tinue with Step (5).

(5) If J < −r − εtol, then the reachable set has yet to reach the set M. Update tlower ← ttest,
∆t ← min{2∆t,

tupper−tlower

2 }.
Also update t← ttest, p(t)← p0 and continue with Step (2).
Otherwise finish with Step (6).

(6) A solution is found within given tolerance: |J + r| 6 εtol. Return t0 = ttest as the optimal
time for problem (P1), and p0.

Notes: the algorithm performs bisection-like search on the time interval [0, T ]. Probability
of finding suitable p1 at Step (1) may be estimated using results from Section 5. However, it
can be found non-randomly at Step (1) if we can somehow find a unit separation vector p1 ∈ R

n

such that (p1, x) 6 0 for all x ∈ −M0. Further at each Step (2), the initial value p1 of the gradient
projection algorithm is chosen non-randomly. At Step (5), the time step is doubled for faster search.
The algorithm may also operate if the value T is unknown (i.e. tupper =∞), but for tupper > T
convergence conditions for the gradient projection algorithm may be violated. Nevertheless the
invariance tlower 6 ttest 6 tupper is satisfied.

The algorithm stops when we obtain J with a given tolerance εtol, in all examples here and
below εtol = 10−7 and at the final stage tupper− tlower ∼ 10−6. We also can stop the algorithm with
a given precision with respect to the time t: e.g. when tupper − tlower 6 εtime we finish calculations
and take t ∈ [tlower, tupper]. Here εtime > 0 is an admissible time error.

For system (23) Algorithm converges in 21 steps. The optimal time is 2.7383842,

p0 = (0.77091811,−0.60777697, 0.19050571).
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Fig. 4. Attainable set at the moment of intersection and the optimal trajectory (problem (P1), Example 1).

Figure 4 depicts the reachable set and the target set at the moment when they intersect. The
optimal trajectory (as in 9) with two switches can also be seen. Also see [24].

As was shown in Introduction, the reachable set R(t) of system (23) is not strongly convex. For

U =B×[−1, 1] and t>0 we have s(p,R(t)) = ∫ t0 e−1.3s|p1 s
2

2 +p2s+p3| ds for any p= (p1, p2, p3)∈S1.
For the solution p0 = (0.77091811,−0.60777697, 0.19050571) and t = 2.73838 . . . we have the roots

s1(p0) < s2(p0) of the equation p1
s2

2 + p2s+ p3 = 0 for p = p0. By the inverse function theorem the

roots S1 ∋ p→ si(p), i = 1, 2, of the equation p1
s2

2 + p2s+ p3 = 0 are analytic in some neighbour-
hood of the point p0 ∈ S1. In other words, there exists a number γ > 0 such that the functions

S1 ∩Bγ(p0) ∋ p→ si(p), i = 1, 2,

are Lipschitz continuous with some constant L > 0. Moreover, we can choose the number γ > 0 so
that the first components of p and q are strictly positive and max{s1(p), s1(q)} 6 min{s2(p), s2(q)}
for all p, q ∈ S1 ∩Bγ(p0).

Fix a pair of points p, q ∈ S1∩Bγ(p0). Put M = max
s∈[0,t]

‖eAs‖. Then |si(p)−si(q)| 6 L‖p− q‖ for

i = 1, 2 and for the supporting elements, using the estimate ‖U(eAT sp)− U(eAT sq)‖ 6 2, we have

‖R(t)(p) −R(t)(q)‖ =
2
∑

i=1

∥

∥

∥

∥

∥

∥

∥

si(q)
∫

si(p)

eAs(U(eAT sp)− U(eAT sq)) ds

∥

∥

∥

∥

∥

∥

∥

6 4ML‖p− q‖.

Thus the part of surface {R(t)(p) : p ∈ S1 ∩Bγ(p0)} is a part of a strongly convex set with radius
R = 4ML. In the present example it’s enough for convergence of the gradient projection algorithm
at time t. The same situation takes place for a time less than t.

6.2. Problem (P1), Example 2

Consider an example in R
12.

A = diag(−0.3,−0.8,−1,−0.7,−0.71,−0.52,−0.37,−0.05,−0.25,−0.89,−0.99,−0.2), U = B1(0).
The target set isM =M0 +Br(0), whereM0 is the ball B0.4(0.3× 1) (1 = (1, 1, . . . , 1)), r = 0.2,
step-size λ = 0.1.
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Fig. 5. The kth components uk of the optimal control (problem (P1), Example 2).

Figure 2,b: convergence of the gradient projection algorithm for the auxiliary problem
min‖p‖=1 f(p, t) for the time t = 0.5 and the initial condition

p1 = (0.02046203, 0.24278712, 0.2199823, 0.33539534, 0.11750331, 0.07584814,

0.44196329, 0.14159412, 0.08314335, 0.32560626, 0.49401057, 0.43339861)

with f(p1, 0.5) = −0.047713028083805786.
Approximation of convergence rate is f(pk, 0.5) − f(p0, 0.5) ≈ 0.1218 × 0.8122k .

The optimal value is

p0 = (0.2730037, 0.30197686, 0.3125336, 0.29647251, 0.29702965, 0.28619273,

0.27727228, 0.2572461, 0.26991497, 0.30680235, 0.31202019, 0.26679398)

with f(p0, 0.5) = −0.2023841828091369.
Algorithm converges in 21 steps to the point

p0 = (0.27281666, 0.3021221, 0.31280135, 0.29655398, 0.29711758, 0.28615572,

0.27713348, 0.25688441, 0.26969324, 0.30700357, 0.31228196, 0.26653741)

and the optimal time is 0.503150463104248.

Figure 5 illustrates the optimal control (per components, each line means one of 12 components).

6.3. Problem (P2). Example 3

The reachable set (as in (23)) is touching the target set from the inside.

The target set is the ellipsoidM = {x : (x− c)TQ(x− c) 6 R2}, with

Q =







4.5 −1.2 −1.6
−1.2 6.8 −2.3
−1.6 −2.3 8






, c =







−3.4
−3.8
0.3






, R = 12.

Recall that f(p, t) = s(p,M)− s(p,Rε(t)), here we take ε = 0.05, step-size λ = 0.2.
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Fig. 6. Solution of problem (P2), Example 3.

Figure 6: For system (23) a similar bisection algorithm converges in 19 steps (i.e. |J + ε| 6
εtol = 10−7). The optimal time is t = 1,64610733, p0 = (0,36800454, 0,72705740 − 0,57962073).

6.4. Problem (P2). Example 4. Homothete Inside the Target Set

We solve problem (P2) for a homothete, i.e. the problem is stated as

max
t>0

t : tR ⊂M. (24)

DefineM = B10(0), i.e. the ball centered at 0 of raduis 10. The set R is a strongly convex segment
with endpoints [−0.1, 3, 2.05884573], [−1.9, 3,−1.05884573] and radius of strong convexity R = 3,
i.e. R is the intersection of all closed balls of radius R = 3 containing the endpoints.

The supporting element for a unit vector p = (p1, . . . , pn) for a strongly convex segment with

endpoints [−ae1, ae1] and radius of strong convexity R > a is equal to Rp −
√
R2−a2√
1−p2

1

(I − e1e
T
1 )p if

arctan
( p1√

1−p2
1

)

< arcsin( a
R), otherwise it is equal to sign(p1)ae1. We shall consider the homoth-

ety tR, with parameter ε = 0.1 in the definition of f in (15), and step-size λ = 0.2.

Fig. 7. Problem (P2), Example 4. The homothete is not contained insideM when t = 3.
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For t = 3 the set tR is not contained inM (see Fig. 7). An algorithm, similar to one for prob-
lem (P2), in 21 steps gives the optimal value t0 = 2.62904820 and p0 = (−0.3425777, 0.93398621,
0.10153957) (i.e. |J + ε| 6 εtol = 10−7).

6.5. Problem (P3). Example 5

Consider an example in R
10

A = diag(0.1, 0.75, 0.8, 0.81, 0.82, 0.95, 1.0, 1.0, 1.05, 1.1), U = B1(0). The target set is M =
B0.1(0.1× 1), (1 = (1, 1, . . . , 1)), ε = 0.1, step-size λ = 0.1.

We need 21 runs of the gradient projection algorithm to get the solution point

p0 = (0.44643102, 0.32328081, 0.3153902, 0.3138356, 0.31228874,

0.29286442, 0.28572048, 0.28572048, 0.27875066, 0.27195027)

and the optimal time is t0 = 0.35823087.

7. CONCLUSION

In this paper we used a minimization Problem 1 to propose effective solution methods for several
other problems (P1)—(P3) that involve distances and inclusions between sets. Linear convergence
of proposed algorithms is proven. Several examples are given to prove the effectiveness of proposed
solutions.

APPENDIX

A.1. PROOF OF LEMMA 1

Multiply both sides of the inequality by
√

‖p‖ ‖q‖ and take the square.

A.2. PROOF OF LEMMA 3

By the equality eAs = JeA1sJ−1 we get

R(t) =
t
∫

0

JeA1sJ−1U ds =

t
∫

0

JeA1sU1 ds = JR1(t).

The result follows from [25, Theorem 3].

A.3. PROOF OF LEMMA 3

We have U = U0 + Br(0). Then R(t) = R0(t) + r
∫ t
0 e

AsB1(0) ds,

R0(t) =

t
∫

0

eAsU0 ds.

It is enough to prove that the ellipsoid eAsB1(0) is uniformly smooth with constant r(s) = λ2
n(s)

λ1(s)
.

Consider orthonormal basis where the ellipsoid eAsB1(0) has a canonical form

N =

{

x ∈ R
n :

n
∑

k=1

x2k
λ2
k

6 1

}

, λk = λk(s).

Then the matrix L = diag {λ1, . . . , λn} gives LB1(0) = N . The ellipsoid V = {x :
∑n

k=1 λ
2
kx

2
k 6 1}

is strongly convex with radius ρ = λ1/λ
2
n. Hence there exists another compact convex set P with

V + P = Bρ(0) and, taking in mind that LV = B1(0), we have

LV + LP = LBρ(0) = ρLB1(0) = ρN ⇔ 1

ρ
B1(0) +

1

ρ
P = N .

Thus the set N is uniformly smooth with constant 1
ρ = λ2

n/λ1.
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A.4. PROOF OF THEOREM 1

Let I be the identity matrix. Assume that p0 ∈ S1 is the solution of problem (1). From the
necessary condition of extremum f(p0) = (p0, f

′(p0)) = −‖f ′(p0)‖. Then PTp = I − ppT for any
p ∈ S1 and ‖(I − ppT )f ′(p)‖2 = ‖f ′(p)‖2 − f2(p). Hence for all p ∈ S we get

‖f ′(p)‖2 − f2(p) = (‖f ′(p)‖ − f(p))(‖f ′(p)‖+ f(p0) + f(p)− f(p0)).

From the inequality f(p) 6 0 and the fact that the supporting element f ′(p0) = N (t)(p0) has min-
imal norm, we have ‖f ′(p)‖ − f(p) > ‖f ′(p)‖ > ‖f ′(p0)‖ = |J |. It remains to note that ‖f ′(p)‖ +
f(p0) = ‖f ′(p)‖ − ‖f ′(p0)‖ > 0.

For any vectors p, q ∈ R
n, 1− ε 6 ‖p‖, ‖q‖ 6 1 + ε, by Lemma 1 we obtain that

∥

∥

∥

p
‖p‖ −

q
‖q‖

∥

∥

∥ 6

‖p−q‖√
‖p‖ ‖q‖

. Fix such p, q. Then by Lipschitz continuity of the supporting element f ′(ξ) = N (t)(ξ)

on the unit sphere with Lipschitz constant R and by the equality f ′(ξ) = f ′ (ξ/‖ξ‖), for all ξ 6= 0,
we get

‖f ′(p)− f ′(q)‖ 6 R

∥

∥

∥

∥

p

‖p‖ −
q

‖q‖

∥

∥

∥

∥

6
R‖p − q‖
√

‖p‖ ‖q‖ 6
R

1− ε
‖p− q‖. ⊓⊔

A.5. PROOF OF THEOREM 2

Define qk = pk − λf ′(pk), ‖qk‖ > 1− λ‖f ′(pk)‖ > 1− λL >
1
2 . By ‖pk‖ = ‖pk+1‖ = 1, Lemma 1

and from the inequality

‖pk+1 − pk‖ = ‖PS1
(pk − λf ′(pk))− pk‖ 6

‖pk − qk‖
√

‖pk‖ ‖qk‖
6 λ
√
2‖f ′(pk)‖ 6 λ

√
2L 6

1√
2

we get [pk, pk+1] ⊂ {p ∈ R
n : 1

2 6 ‖p‖ 6 3
2}. By Theorem 1 f ′ is Lipschitz continuous on the

segment [pk, pk+1] with constant L1 = R/(1 − 1
2) = 2R.

We also have the LPL condition for the function f on the set S by Theorem 1 with µ = |J |.
Fix λ from the proposition and ℓ = 1

λ > L1. Put zk = ‖ℓpk − f ′(pk)‖ − (pk, pk − f ′(pk)) > 0,

zk =
‖(I − pkp

T
k )f

′(pk)‖2
‖ℓpk − f ′(pk)‖+ (pk, pk − f ′(pk))

>
‖(I − pkp

T
k )f

′(pk)‖2
2‖ℓpk − f ′(pk)‖

. (A.1)

We have

‖pk+1 − pk‖2 = 2− 2
(pk, ℓpk − f ′(pk))
‖ℓpk − f ′(pk)‖

=
2zk

‖ℓpk − f ′(pk)‖
and from the Lipschitz property of f ′ on the segment [pk, pk+1] with constant L1

f(pk+1)− f(pk) 6 (f ′(pk), pk+1 − pk) +
L1

2
‖pk+1 − pk‖2

= (pk, L1pk − f ′(pk))−
(

L1pk − f ′(pk),
ℓpk − f ′(pk)
‖ℓpk − f ′(pk)‖

)

=

(

ℓpk − f ′(pk) + (L1 − ℓ)pk, pk −
ℓpk − f ′(pk)
‖ℓpk − f ′(pk)‖

)

,

f(pk+1)− f(pk) 6 −zk + (L1 − ℓ)

(

pk, pk −
ℓpk − f ′(pk)
‖ℓpk − f ′(pk)‖

)

= −zk +
L1 − ℓ

‖ℓpk − f ′(pk)‖
zk 6 −zk.

From (A.1) and from the LPL condition with µ = |J | we obtain that

f(pk+1)− f(pk) 6 −
‖(I − pkp

T
k )f

′(pk)‖2
2‖ℓpk − f ′(pk)‖

6 − |J |
2‖ℓpk − f ′(pk)‖

(f(pk)− f(p0)).
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Define ϕ(p) = f(p)− f(p0) for all p ∈ S1. From the estimate ‖ℓpk − f ′(pk)‖ 6 ℓ+ ‖f ′(pk)‖ 6 ℓ+L
we have

ϕ(pk+1) 6

(

1− |J |
2ℓ+ 2L

)

ϕ(pk) = qϕ(pk)

and q ∈ (0, 1) because |J | = ̺(0,N (t)) 6 ‖N (t)‖ = L.

For the points {pk} we have (note that ‖pk − λf ′(pk)‖ > 1)

‖pk+1 − pk‖2 6
2zk

‖ℓpk − f ′(pk)‖
6

2λ(f(pk)− f(pk+1))

‖pk − λf ′(pk)‖
6 2λϕ(pk).

A.6. PROOF OF THEOREM 3

Consider f(p):

f(p) = s(p,M0) + r‖p‖ − s(p,Rε(t)).

The setRε(t) is strongly convex with radiusRT + ε < r. Hence there exists another convex compact
set N (t) with Rε(t) +N (t) = BRT+ε(0) and r‖p‖ − s(p,Rε(t)) = (r −RT − ε)‖p‖ + s(p,N (t)).
Thus for all p ∈ R

n

f(p) = s(p,M0) + (r −RT − ε)‖p‖+ s(p,N (t)) = s(p,M0 +N (t) + Br−RT−ε(0))

and the function f(p) is the supporting function of the set N (t) = M ∗ Rε(t) = M0 + N (t) +
Br−RT−ε(0). The latter set is strongly convex with radius R0 and uniformly smooth with constant
r0 = r−RT −ε > 0. The function f ′ is Lipschitz on the set S1 with constant R0 and as in the proof
of Proposition 2 [pk, pk+1] ⊂ {p ∈ R

n : 1
2 6 ‖p‖ 6 3

2}. Thus for any point p from the segment
[pk, pk+1] we have ‖p‖ > 1

2 and for any p, q ∈ [pk, pk+1] by Lemma 1

‖f ′(p)− f ′(q)‖ =
∥

∥

∥

∥

f ′
(

p

‖p‖

)

− f ′
(

q

‖q‖

)∥

∥

∥

∥

6 R0

∥

∥

∥

∥

p

‖p‖ −
q

‖q‖

∥

∥

∥

∥

6 R0
‖p− q‖
√

‖p‖ ‖q‖ 6 2R0‖p− q‖,

i.e. f ′ is Lipschitz on any segment [pk, pk+1] with constant 2R0. From the Lipschitz property of f ′

and Proposition 2 f(pk) 6 0 for all k.

‖pk+1 − p0‖2 = ‖PS1
(pk − λf ′(pk))− PS1

(p0 − λf ′(p0))‖2,

‖pk − λf ′(pk)‖ > 1, ‖p0 − λf ′(p0)‖ > 1, i.e. pk − λf ′(pk) /∈ intB1(0), p0 − λf ′(p0) /∈ intB1(0) and
thence

‖pk+1 − p0‖2 6 ‖pk − p0 + λ(f ′(pk)− f ′(p0))‖2

6 ‖pk − p0‖2 − 2λ(pk − p0, f
′(pk)− f ′(p0)) + λ2‖f ′(pk)− f ′(p0)‖.

From the strong convexity of the set N (t) with radius R0 we have ‖f ′(pk)− f ′(p0)‖ 6 R0‖pk − p0‖.
Also by the strong convexity of the set N (t) with radius R0 we have [28, Theorem 2.1 (h)]
(pk − p0, f

′(pk)− f ′(p0)) > 1
R0
‖f ′(pk)− f ′(p0)‖2 and by the uniform smoothness of the set N (t)

with constant r0 [28, Definition 3.2, Theorem 3.6]

(pk − p0, f
′(pk)− f ′(p0)) >

1

R0
‖f ′(pk)− f ′(p0)‖2 >

r20
R0
‖pk − p0‖2.

Thus ‖pk+1 − p0‖2 6 q2‖pk − p0‖2.
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A.7. PROOF OF THEOREM 4

Repeat the proof of Theorem 3. In particular, the function f(p) is the supporting function for
the set R(t) ∗ Mε = R(t) ∗ M ∗ Bε(0). The last set is strongly convex with constant RT and
uniformly smooth with constant r. ⊓⊔
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